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Abstract: Recent progress in rotational sensor technology has made it possible to directly measure
rotational ground-motion induced by seismic waves. When combined with conventional inertial
seismometer recordings, the new sensors allow one to locally observe six degrees of freedom (6DOF) of
ground-motion, composed of three orthogonal components of translational motion and three orthogonal
components of rotational motion. The applications of such 6DOF measurements are manifold—ranging
from wavefield characterization, separation, and reconstruction to the reduction of non-uniqueness in
seismic inverse problems—and have the potential to revolutionize the way seismic data are acquired
and processed. However, the seismological community has yet to embrace rotational ground-motion
as a new observable. The aim of this paper is to give a high-level introduction into the field of 6DOF
seismology using illustrative examples and to summarize recent progress made in this relatively young
field. It is intended for readers with a general background in seismology. In order to illustrate the
seismological value of rotational ground-motion data, we provide the first-ever 6DOF processing example
of a teleseismic earthquake recorded on a multicomponent ring laser observatory and demonstrate how
wave parameters (phase velocity, propagation direction, and ellipticity angle) and wave types of multiple
phases can be automatically estimated using single-station 6DOF processing tools. Python codes to
reproduce this processing example are provided in an accompanying Jupyter notebook.

Keywords: seismology; rotation; gyroscope; ring laser; seismic tomography; seismic exploration

1. Introduction

“Instruments ought to be devised [...] to ends [...], such as the measurement of horizontal concussions, of
vertical elevation, and of heaving or angular motion of the surface. It is no part of my present object to
consider the probable movements of the soil in earthquakes. I limit myself to the description of a single
instrument intended to measure lateral shocks, such as are experienced by objects placed upon a table
which is abruptly shoved forwards.” (James David Forbes (1844) [1].
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After the occurrence of a series of pronounced earthquakes in Comrie in 1842, the British Association
for the Advancement of Science awarded a grant of 20£ to form a committee to develop an instrument
capable of registering the shocks of earthquakes [1,2]. This committee, led by Scottish physicist James
David Forbes, constructed one of the first modern-day seismometers based on the principle of the
inverted pendulum [3]. The instrument was capable of registering, and marking in pencil, horizontal
translational displacements of the ground. Already then, Forbes and his co-investigator David Milne-Home
acknowledged the necessity for additional instruments capable of measuring ‘heaving or angular motion of
the surface’.

Since then, the sensitivity of inertial seismometers measuring all of the three components of
translational displacement (or temporal derivatives thereof, such as particle velocity or acceleration)
has been constantly improving. Current day seismometers are capable of registering tiniest ground
displacements of only a few nanometers, corresponding to about 1/100,000th of the width of a human hair.
Signals recorded by such seismometers are routinely used by seismologists to image the Earth’s interior
from the shallow subsurface down to the core. However, until recently, an instrument capable of recording
angular ground motions, as envisaged by Forbes and Milne-Home, was still missing.

In fact, it took 150 years before Robert Nigbor could report on the first successful observations
of such ‘rotational’ ground-motions using a solid-state rotational velocity sensor [4]. It was Nigbor
who coined the term ’six-degree-of-freedom (6DOF) measurement’ for combined recordings of the three
components of translational and the three components of rotational ground-motion. At this point, it
might be important to state that a 6DOF measurement still does not provide a complete observation of
seismically induced ground-motion. Only completely rigid objects (such as a seismometer or an airplane)
are limited to six degrees of freedom. The Earth itself, however, is as an elastic continuum that can
undergo deformations, such as dilational and shear strains. A 6DOF measurement is, therefore, still only
a partial measurement. A complete observation of seismic ground-motion would require the additional
recording of ground strains.

The sensitivity of the early solid-state rotational sensors used by Nigbor [4] and fiber-optical
gyroscopes later used by Takeo [5] was limited to strong-motion signals recorded in the vicinity of
artificial and earthquake sources.

The development of highly sensitive ring laser gyroscopes that were designed primarily with the aim
to detect variations in the Earth’s absolute rotation rate led to further observations of earthquake-induced
ground rotation [6,7]. However, the measurements were still not fully consistent in amplitude and phase
with translational motions recorded with collocated seismometers. Thanks to further development of the
ring laser technology, these inconsistencies could be eliminated [8–11].

Today, we are at a stage where rotational ground-motion observations are starting to become
more widespread and more accurate. The first portable rotational sensors designed specifically for the
needs of seismology have recently become available, e.g., blueSeis—3A by iXBlue; rotaphone [12,13].
Due to the increasing instrumentation coverage, the catalogue of rotational motion observations is
continuously growing [14]. However, the seismological community yet has to embrace rotational motion
as a new observable.

As we will try to lay out in this paper, the applications of rotational motion measurements are
manifold—ranging from wavefield characterization, separation and reconstruction to the reduction of
non-uniqueness in seismic inverse problems—and have the potential to revolutionize the way seismic
data are acquired and processed. This paper aims to give a high-level introduction into the field of
6DOF seismology using illustrative examples and is intended for a reader with a general background
in seismology.

This article is structured in the following way. We first revisit the fundamental theory underlying six
degree-of-freedom data processing (Section 2). In Section 3, we then focus on the applications of combined
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rotation and translation measurements in seismology and provide two tutorials on how to process 6DOF
data for applications, like wavefield characterization and wavefield reconstruction. Ultimately, an overview
on the variety of rotation rate sensors and their working principles is given in Section 4.

For further information on the history of rotational seismology, we would like to refer the reader to
the following reviews found in References [15–21].

2. Theoretical Foundations

In this section, we review the fundamental aspects of linear elasticity relevant to understand the
rotational motions associated with seismic waves. In the following, we will work with a Cartesian
coordinate system with coordinates x, y, and z. Consider two nearby points in 3-D space located at
positions x and x + δx (Figure 1). Initially, the two points are separated by the distance δx. Now, suppose
the point at x undergoes a displacement of u(x) moving it to ξ = x + u(x). In order to describe the
deformation of the medium in the vicinity of x, we will consider the relative motion of the particle at x to a
nearby point at x + δx, thus describing the deformation of the line segment δx to the deformed state δξ,
(e.g., Reference [22]):

δξ = δx + δu = x + δx + u(x + δx)− (x + u(x)). (1)

We assume that |δx| is arbitrarily small so that u(x + δx) can be expanded as u(x) + (δx · ∇)u using a
first-order Taylor series. The relative displacement between the two points δu can thus be described by

δu =

 δux

δuy

δuz

 = G

 δx
δy
δz

 =

 ∂xux ∂yux ∂zux

∂xuy ∂yuy ∂zuy

∂xuz ∂yuz ∂zuz


 δx

δy
δz

 , (2)

where G is the displacement gradient tensor, which can be decomposed into symmetric and anti-symmetric
parts as:

G =
1
2
(G + GT) +

1
2
(G−GT). (3)

If the displacement gradients are small (|∂jui| � 1), the symmetric part corresponds to the
infinitesimal strain tensor

ε =

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 =

 ∂xux
1
2 (∂yux + ∂xuy)

1
2 (∂zux + ∂xuz)

1
2 (∂xuy + ∂yux) ∂yuy

1
2 (∂zuy + ∂yuz)

1
2 (∂xuz + ∂zux)

1
2 (∂yuz + ∂zuy) ∂zuz

 , (4)

and the anti-symmetric part corresponds to the infinitesimal rotation tensor

Ω =

 0 1
2 (∂yux − ∂xuy)

1
2 (∂zux − ∂xuz)

1
2 (∂xuy − ∂yux) 0 1

2 (∂zuy − ∂yuz)
1
2 (∂xuz − ∂zux)

1
2 (∂yuz − ∂zuy) 0

 , (5)

so that
δu = εδx + Ωδx. (6)

The infinitesimal rotation tensor can also be expressed in terms of the three-component rotation vector
~ω so that

δu = εδx + ~ω× δx, (7)
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where the rotation vector is equal to half the curl of the displacement field:

~ω =
1
2
∇× u =

1
2

 ∂yuz − ∂zuy

∂zux − ∂xuz

∂xuy − ∂yux

 . (8)

It follows from Equation (8) that the rotation vector can be computed if the complete displacement
field is known. On the other hand, missing information on the displacement field can be reconstructed if
direct measurements of the rotation vector are available.

u(x)

ω

ξ

δξ

ξ+δξ
x+δx

δx

x

u(x+δx)

Figure 1. Displacement of a line segment δx with its end points x and x + δx in the undeformed state
(light gray) being displaced by u(x) and u(x + δx) to ξ and ξ + δξ in the deformed state, respectively.
The total rotation due to the displacement corresponds to the angle ω between δx and δξ modified after
Reference [21].

Under the assumption of infinitesimal displacement gradients, the second term in Equation (7)
(ω × δx) is merely due to a static rotation and does not produce a deformation, e.g., Reference [22].
Therefore, it does not enter Hooke’s law. Within an elastic continuum, such as the Earth, there can be
deformation, but no static rotation. Static rotations are purely associated with rotations of the whole
continuum, for example due to the rotation of the Earth or the rotation of entire continents. For the time
scales relevant in seismology, these effects are often negligible. In seismology, static rotations only occur
in the near-field of large earthquakes. Recently, static rotations could be directly observed for the first
time during an eruption of the Kilauea volcano using a dedicated rotational seismometer [23]. For weak
motion (i.e., seismic waves), the displacement gradient of a deformation in an elastic continuum can be
fully described by its symmetric part (i.e., the strain tensor). Yet, it is well known that the displacement
gradient tensor of the seismic wavefield, unlike the deformations it causes, is not purely symmetric and
that its rotation vector is not zero. In fact, if the displacement gradients of the seismic wavefield were
purely symmetric, there would be no rotational ground-motion. To explain this apparent contradiction,
we need to consider dynamic aspects in addition to the purely kinematic aspects discussed above.
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For simplicity, we will consider a purely isotropic, homogeneous elastic medium. The strain tensor
(describing the deformation of the medium, Equation (4)) can then be related to the stress tensor σ via the
elastic constitutive equation (Hooke’s law)

σij = [λδijδkl + µ(δikδjl + δilδjk)]εkl , (9)

where λ and µ are Lamé’s constants, and δij is Kronecker’s delta. Einstein’s summation convention is
used for repeated subscripts, and it will be used in the following equations, as well. We now additionally
consider the equation of motion

ρ∂2
t ui = fi + ∂jσij, (10)

where fi denotes a body force, ρ is the density, and t is time. Substituting the constitutive equation
(Equation (9)) and the definition of strain (Equation (4)) into the equation of motion (Equation (10)) yields
the elastic wave equation, which can be written as:

ρ∂2
t u = f + (λ + 2µ)∇(∇ · u)− µ∇× (∇× u). (11)

The wave equation describes the propagation of a displacement perturbation through an elastic,
homogeneous medium. If we now take the curl of the elastic wave equation (Equation (11)) in a source-free
region (i.e., fi = 0) and apply vector identities, we eventually find

∇2(∇× u)− 1
β2 ∂2

t (∇× u) = 0, (12)

where β is the shear wave velocity (β =
√

µ/ρ). Equation (12) is simply the wave equation applied to
the curl of the displacement field with a velocity of β. In an isotropic homogeneous elastic medium,
Equation (12) describes the propagation of S-waves. Equation (12) demonstrates that, in an isotropic
medium, the curl of an elastic wavefield, and thus the anti-symmetric part of the displacement gradient
tensor (Equation (7)) measured by a rotational sensor, is indeed not zero but equal to the shear wave
constituent of the wavefield.

This becomes more clear when we consider a simple solution to the elastic wave equation in the form
of the plane-harmonic solution for waves so that the particle velocity (temporal derivative of displacement)
at position r = [x, y, z]T and at time t is described by u̇(r, t) : R4 → R3 as:

u̇(r, t) = Ah cos(ωt− k · r), (13)

where A is the particle velocity peak amplitude, h is the polarization vector describing the direction of
the particle displacement, and ω is the angular frequency. The vector quantity k = kl is the wave vector
in which magnitude k is the wavenumber, which is related to the propagation velocity c of the wave as
k = ω/c. The vector quantity l = [lx, ly, lz]T determines the propagation direction of the wave by the
direction cosines li.

If we now estimate the rotational motions of this wave by applying Equations (8)–(13), we find the
rotation rate vector:

~̇ω(r, t) =
1
2
(∇× u̇) = −A

2
k× h sin(ωt− k · r) = −A

2
ω

c

 lyhz − lzhy

lzhx − lxhz

lxhy − lyhx

 sin(ωt− k · r). (14)
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From Equation (14), it follows that P-waves inside an isotropic medium do not generate rotational
motions since, for P-waves, the polarization vector is parallel to the propagation direction so that h = l and
thus ~̇ω = 0. S-waves, on the other hand, exhibit ground displacements perpendicular to the propagation
direction, thereby causing a simple shear deformation and thus generate rotational motions. Equation (14)
states that rotational motions are only generated by waves that exhibit particle displacements nonparallel
to the propagation direction. In anisotropic media, where both the polarization vector h and the velocity c
depend on the wave propagation direction l, P-waves can thus also generate rotational motions [24].

Another key observation that follows directly from Equation (14) is that the amplitude of the rotational
motions induced by a plane wave inversely scale with the wave’s phase velocity c. If we now take the
temporal derivative of Equation (13), thereby converting the particle velocities to particle acceleration,
we obtain:

ü(r, t) = −Aωh sin(ωt− k · r). (15)

This result is of specific interest since it illustrates one of the key benefits of combined rotation and
translation measurements. If both quantities are measured at a discrete point in space r, the ratio between
the magnitude of the two measurements yields

|ü(r, t)|
|~̇ω(r, t)|

= 2c |l× h|−1 , (16)

where the magnitude of the cross product on the right hand side is 1, if l ⊥ h (i.e., for an S-wave in an
isotropic medium). In this case, the ratio between the two measurements at a single point provides direct
access to the shear wave speed, a quantity that can conventionally only be obtained from the analysis of
array data. On the other hand, the magnitude of the cross product on the right hand side of Equation (16)
becomes 0, if l ‖ h (i.e., for a P-wave in an isotropic medium). In the case of an anisotropic medium,
the magnitude of the cross product can take on any value between 0 and 1, depending on the angle
between the propagation and polarization directions.

Rotational Ground Motion at the Free Surface

Most seismic measurements are taken directly at or immediately below the Earth’s surface. This has
direct implications on the quantities that are measured by a rotational seismometer due to the special
boundary conditions that apply. At a free surface, all stresses acting in the direction normal to the surface
vanish (zero-traction boundary condition). Revisiting the stress-strain relationship for an elastic, isotropic
medium (Equation (9)), we find the following conditions for the stress rate components σ̇xz, σ̇yz, and σ̇zz at
the Earth’s surface:

σ̇xz = µ(∂xu̇z + ∂zu̇x) = 0,
σ̇yz = µ(∂zu̇y + ∂yu̇z) = 0,
σ̇zz = λ(∂xu̇x + ∂yu̇y + ∂zu̇z) + µ(∂zu̇z + ∂zu̇z) = 0.

(17)

At the free surface, the vertical derivatives can thus be expressed in terms of horizontal derivatives as:

∂zu̇x = −∂xu̇z,
∂zu̇y = −∂yu̇z,
∂zu̇z = − λ

λ+2µ (∂xu̇x + ∂yu̇y).
(18)



Sensors 2020, 20, 6904 7 of 32

As a result, the rotation vector (Equation (8)) at the Earth’s surface can be expressed using purely
horizontal derivatives in the following form:

~̇ω =
1
2
∇× u̇ =

 ∂yu̇z

−∂xu̇z
1
2 (∂xu̇y − ∂yu̇x)

 . (19)

This means that a rotation sensor placed at the Earth’s surface provides a way to directly measure
the horizontal derivatives of the vertical wavefield component. This result can be used to relax spatial
sampling requirements in seismic exploration by the use of generalized sampling concepts (see Section 3.2).
Additionally, Equation (19) implies that two-dimensional surface-deployed seismometer arrays are
sufficient to geodetically derive the full rotation vector at the Earth’s surface (no buried sensors are
required to measure the vertical derivatives) above a homogeneous and isotropic medium (see Section 4.2).

Another effect of the Earth’s surface is that there will be rotational motions associated with the
arrival of a P-wave, even in an isotropic medium. This is due to mode-conversions that take place at
the boundary. Incoming P-waves at the Earth’s surface reflect into both a down-going P-wave and an
additional down-going S-wave. The rotational motion generated by this down-going S-wave will be
picked up by a rotational sensor. The relative amplitude of the reflected wave (and thus the amount of
rotational motion generated) depends on the incident angle of the incoming wave and the local P- and
S-wave velocities at the recording station. Low velocities and incident angles close to the horizontal will
yield larger amplitudes in rotational motions. A single 6DOF measurement can therefore theoretically be
used to directly constrain the local P- and S-wave velocities [25].

3. Processing of 6DOF Ground-Motion Measurements

Early research on potential applications of rotational motion measurements was primarily driven
by the earthquake seismology and earthquake engineering communities. This is mainly due to the rapid
development of the ring laser technology, which enabled the direct observation of rotational motions in
the frequency-band relevant for earthquake seismology. Applications to seismic exploration problems
were hampered by the lack of a portable, affordable sensor with the required sensitivity. However, some
applications on the exploration scale have been demonstrated using array-derived estimates of rotational
motion. In the following, we will give an overview of the current state of research in analyzing 6DOF
recordings both on the global and the exploration scale with a particular focus on progress made in the
past few years.

3.1. Array-Like Capabilites of Single-Station 6DOF Measurements

Since the 1960s, seismology has profited immensely from the application of array processing methods.
Arrays of seismometers with a uniform instrument response (or appropriately corrected response) enable
the direct observation of the propagation delays of seismic phases as they pass through the array, thereby
providing a way to extract the vector velocity (wave speed and propagation direction) of an incident
wavefront by the application of array processing techniques, such as beamforming, slant-stacking, or
frequency-wavenumber analysis [26]. One of the downsides of seismological arrays is that they are
expensive to deploy, and special care needs to be taken to ensure that the network is homogeneous and
that site effects are avoided.

Since single-station 6DOF recordings provide direct access to the phase velocity and propagation
direction under the plane wave assumption (Equation (16)), they theoretically provide similar capabilities
in extracting the vector velocity as seismological arrays, which is why 6DOF recording stations are
sometimes referred to as ‘point seismic arrays’ [27]. The rich amount of information that can be extracted
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from 6DOF recordings makes such ‘point arrays’ attractive for the deployment in areas where extended
receiver arrays cannot be used, for example, on the ocean bottom [28], in mountainous areas, or in
extraterrestrial seismology [29].

3.1.1. Single-Station 6DOF Wave Parameter Estimation

The potential to extract the vector velocity of seismic phases was recognized early on as one of
the key benefits of rotation measurements for seismology [6,7,30]. Due to significant advances in the
accuracy of ring laser measurements, this capability could be demonstrated on 6DOF data for Love waves
of teleseismic and regional earthquakes [9,31–33]. The noise floor of modern-day ring lasers (down to
10−12 rad/s over a wide frequency-range) is even low enough to observe ocean-generated microseismic
noise. This allowed Hadziioannou et al. [34] to extract the phase velocity and back-azimuth of the strongest
sources in the secondary microseismic noise band. The extracted wave parameters were consistent with
estimates obtained from conventional array processing.

For sources that generate broad-band energy, a single 6DOF observation enables the estimation of
frequency-dependent phase velocities (dispersion curves), which can be used to extract depth-dependent
velocity profiles [35–41].

Maranò and Fäh [42] proposed a maximum likelihood method for the estimation of wave parameters
using 6DOF sensors and showed that rotational motion data help to resolve some of the ambiguity in the
single-station seismic direction finding problem.

Sollberger et al. [25] recognized that tools from conventional three-component polarization analysis
can be adapted to 6DOF data (so-called six-component polarization analysis), which enables the
single-station estimation of wave parameters. They showed that some of the fundamental limitations of
single-station three-component polarization analysis can potentially be overcome with six-component
polarization analysis including the estimation of wave parameters for multiple events overlapping in time,
the 180 degrees ambiguity in estimation of the back-azimuth, the recovery of the true incidence angle of
body waves at the free surface, and the unambiguous identification of the wave type.

Rotational motions are direct measurements of the anti-symmetric part of the gradient tensor of the
displacement field (Section 2). Hence, the extraction of wavefield properties by the combined analysis of
rotational and translational motion is closely related to the so-called wave gradiometry technique [43–46].
Wave gradiometry aims to extract wavefield properties, such as phase velocity, back-azimuth, geometrical
spreading, and radiation pattern, by the combined analysis of the wavefield and its spatial derivatives
(i.e., the wavefield gradient). The spatial derivatives are thereby estimated from dense receiver arrays
using a finite-difference approximation.

Similarly, the second-order spatial derivatives of the wavefield can be estimated using a
finite-difference approximation, so that one can directly invert the hyperbolic wave equation for local
material properties [47]. De Ridder and Biondi [48] demonstrated that such methods, which are closely
related to the wave gradiometry technique, can be successfully applied to short recordings of ambient
seismic noise to image the local velocity structure without the need to compute cross-correlations
of long noise records. De Ridder and Curtis [49] extended the method to also yield anisotropic
wavefield parameters.

3.1.2. Single-Station 6DOF Wave Mode Filtering

Conventionally, the decomposition of a recorded seismic wavefield into different wave modes (P-,
S-, or surface waves) can only be achieved when processing array data. Different phases are thereby
identified based on their different moveout velocities along extended receiver arrays and then separated
using techniques, such as f-k- or slant-stack filtering, e.g., Reference [50]. By additionally taking into
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account polarization information provided by three-component translational recordings, a better separation
between different phases can be achieved, e.g., Reference [51,52]. Nevertheless, at a single recording station,
pure translational motions are not indicative of wave type (e.g., P- and S-waves both exhibit a rectilinear
polarization on the three translational components). In contrast, rotational motion recordings are direct
measurements of the wavefield’s curl and are thus exclusive to S-waves and surface waves in isotropic
media (see Section 2). Rotational motion measurements can thus highly facilitate the identification and
isolation of different wave modes in seismic data. This is of particular importance in seismic exploration
where the recorded wavefields are generally complex due to the heterogeneous near-surface zone and
short source-receiver offsets, causing different wave-modes to severely interfere and overlap in time,
thereby exacerbating a separate interpretation.

Several studies have used the wave mode filtering properties of rotational motions to improve
the S-wave interpretation of seismic recordings. Robertsson and Muyzert [53] proposed to employ
small-aperture 3D arrays of three-component geophones in a tetrahedral shape (three surface geophones in
a triangle and a buried geophone in the center) within which the curl (rotation) and divergence operators
can be estimated in order to separate S-, and P-waves. By exploiting the free-surface boundary condition,
Robertsson and Curtis [54] derived expressions to compute the curl and divergence operators using
purely surface-deployed geophone arrays (no buried geophone required). The authors suggested to
additionally apply up-/down- separation filters based on the elastodynamic representation theorem to
suppress mode-converted waves at the free surface. Compact, truncated expressions for these spatially
infinite filters were recently proposed by Van Renterghem et al. [55] by incorporating spatial wavefield
derivatives (and thus rotational motion measurements). These filters allow one to separate the wavefield
into its up-/down-going and P-/S-constituents for a limited range of incidence angles.

Woelz et al. [56] conducted a high-resolution 3D seismic survey over a site of archaeological
interest and successfully isolated the SH-constituent of the recorded wavefield by estimating the
vertical component of the rotation vector using a finite-difference approximation between closely spaced
geophones. Sollberger et al. [29] used estimates of rotational motion to identify S-waves in the complex
seismograms recorded on the lunar surface during the Apollo 17 mission and could extract the first
comprehensive elastic parameter model of the shallow lunar subsurface. Rotational motions were thereby
array-derived from a small-aperture triangular array of purely vertical-component geophones by exploiting
the free surface boundary condition (Equation (19)).

Since theoretically, the vertical component of rotation is only sensitive to Love and SH-wave motion
in isotropic media, Tanimoto et al. [57] could successfully estimate the Rayleigh-to-Love wave energy
ratio in the secondary microseism by comparing this component with the vertical translational ground
acceleration recorded on a conventional seismometer, which is insensitive to Love waves. In a similar
fashion, Chow et al. [58] used the vertical component of rotation to characterize the amplitude decay of
Love waves. Yuan et al. [59] exploits the fact that the two horizontal components of rotation are purely
sensitive to SV- and Rayleigh-wave motion, thereby providing a stable way to estimate the back azimuth
of seismic arrivals with a single station that does not suffer from the interference of different modes of
vibration. In this way, a single 6DOF recording station can be used to effectively track the evolution of
earthquake ruptures in real time [60].

Sollberger et al. [25] demonstrated that, at the free surface, the 6DOF ground motion pattern of plane
waves is unique for each wave type (P-, SV-, SH/Love-, and Rayleigh-waves) and that the wave types of
two interfering arrivals can be estimated simultaneously using a single 6DOF station. This allows one to
automatically separate the recorded data into contributions from different wave types (see the example
given in Section 3.1.3).

The wave mode filtering aspect of rotational motion data is also one of the key benefits of such
measurements for land seismic exploration, besides the wavefield reconstruction capabilities discussed
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in Section 3.2. Surface waves (in the exploration community often referred to as ground-roll) cause a
major problem in land-seismic exploration since they often cover up the underlying reflection signal that
carries the desired information on subsurface resources. Conventional filtering techniques that aim to
suppress ground roll in the recordings require the spatial sampling to be smaller than half the horizontal
wavelength of the surface waves (Shannon-Nyquist sampling). Since surface waves typically exhibit the
shortest horizontal wavelengths in the entire recording, the spatial sampling in land seismic exploration is
often dictated by this undesired part of the signal. As a result, land seismic exploration campaigns involve
an enormous amount of sensors and channels, causing them to be extremely costly operations.

With 6DOF recordings, surface waves can be identified and suppressed using just a single station
without any requirements on spatial sampling [61,62]. Since the amplitude of rotational motions inversely
scale with phase velocity (e.g., Equation (14)), the low-velocity surface waves appear much stronger
in rotational data than the high-velocity body-wave reflection signal. By adaptively subtracting the
rotational signal from the translational vertical component data (e.g., vertical component geophone),
surface waves can be effectively suppressed [63]. If the inline horizontal-component of ground rotation
is measured, even side-scattered surface waves can be suppressed, which pose a major problem to land
seismic imaging, especially in karstified and desert areas [64]. Sollberger et al. [65] developed a fully
automatic ground-roll identification and suppression scheme, that also successfully removes side-scattered
surface waves, based on the characteristic 6DOF ground motion pattern exhibited by surface waves. The
method retains most of the underlying reflection signal.

3.1.3. Example: Tutorial on 6DOF Processing Using the 2018 Gulf of Alaska Earthquake

On 23 January 2018, a magnitude 7.9 earthquake occurred in the gulf of Alaska. Seismic waves
of the event were recorded on the newly-opened multi-component ring laser observatory ROMY in
Fürstenfeldbruck, Germany [66,67], resulting in the first direct observations of all six degrees of freedom
of ground motion of a teleseism. The recorded data is shown in Figure 2. The data is low-pass filtered so
that it only contains frequencies up to 1 Hz. Here, we will illustrate the array-like processing that can be
applied to this single-station data in order to extract wave parameters and to estimate the wave type of
different arrivals. This section should serve as a short introductory tutorial into 6DOF data processing.
Data and Python codes to reproduce the processing examples that are discussed in this section are provided
alongside this paper and can be accessed at https://github.com/solldavid/6DOF_processing_tutorial.
Please refer to the Jupyter Notebook provided in this repository for instructions on how to use the codes.

Firstly, we are interested in extracting wave parameters, such as the back-azimuth and the phase
velocity of seismic arrivals, from the six-component time series. For illustration purposes, we will
only focus on a single wave type. Here, we choose to analyze Rayleigh waves, yet the same type of
processing can be applied to extract wave parameters for all wave types. Let us start by revisiting
the mathematical model describing the 6DOF ground-motion associated with the arrival of a plane
Rayleigh wave at a recording station. This is important to understand the range of parameters that can be
constrained with a 6DOF recording. Again, we will use the harmonic plane-wave approximation given in
Equation (13). The wave vector of a Rayleigh wave is purely restricted to the horizontal plane since the
wave propagates along the surface and is given by k = k(cos φ, sin φ, 0)T , with φ being the propagation
azimuth. The magnitude of the wave vector k is described by k = ω

c , with ω the angular frequency, and c
the Rayleigh wave phase velocity. Rayleigh waves exhibit an elliptical particle motion in the vertical plane,
which can be described by the polarization vector h = (sin ξ cos φ, sin ξ sin φ, cos ξ)T , where ξ is called the
ellipticity angle of the Rayleigh wave, determining the eccentricity and the sense of rotation (prograde or
retrograde) of the particle motion. An illustration of this simple model is depicted in Figure 3.

https://github.com/solldavid/6DOF_processing_tutorial
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Figure 2. Six-degree-of-freedom (6DOF) recording of the M7.9 23 January 2018, gulf of Alaska earthquake
(occurence time: 2018-01-23 09:31:40 UTC) at the geophysical observatory in Fürstenfeldbruck, Germany.
Rotational data were recorded by the large multi-component ring laser ROMY and translational data were
recorded by a collocated seismometer.

Inserting these expressions into the plane-harmonic solution in Equation (13) thus yields the following
model for the North-, East-, and vertical-components of particle velocity u̇n, u̇e, and u̇z, respectively,
associated with the arrival of a Rayleigh wave:

u̇n(r, t) = A cos φ sin ξ cos (ωt− k · r) ,
u̇e(r, t) = A sin φ sin ξ cos (ωt− k · r) ,
u̇z(r, t) = A cos ξ cos (ωt− k · r + π/2) .

(20)

Note that the vertical component is phase-shifted by π/2 with respect to the horizontal components,
causing the characteristic elliptical particle trajectory.

The rotational motions associated with the arrival of this wave can now be found by computing the
free-surface rotation vector (Equation (19)), yielding the following rotation rates:

ω̇n = A ω
c sin φ cos ξ cos (ωt− k · r)

ω̇e = −A ω
c cos φ cos ξ cos (ωt− k · r)

ω̇z = 0.
(21)

This result shows that rotational motions induced by a Rayleigh wave are limited to rotations
around the two horizontal axes. Linearly polarized Rayleigh waves (i.e., ξ = ±π/2) do not produce any
rotational motion.
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Figure 3. Schematic drawing of the plane harmonic model used to describe Rayleigh waves for
single-station 6DOF analysis.

For the joint analysis of translational and rotational data, it makes sense to convert the particle
velocities in Equation (20) to acceleration. The reasoning behind this is that the amplitudes of rotational
motions scale with frequency (see the factor ω in Equation (21)), whereas this is not the case for the
translational motions. If we take the temporal derivative of the particle velocities in Equation (20),
we obtain

ün(r, t) = −Aω sin ξ cos φ sin (ωt− k · r) ,
üe(r, t) = −Aω sin ξ sin φ sin (ωt− k · r) ,
üz(r, t) = −Aω cos ξ cos (ωt− k · r) ,

(22)

where the amplitudes of the acceleration now also scale with frequency. As a result, the relative amplitudes
of the wave on the all six components (translational acceleration and rotation rate) can be described by a
single six-component vector v, where the first three components describe the amplitude of the wave in the
translational motions and the rest describe the amplitude of the wave in the rotational motions:

v = Aω



−j sin ξ cos φ

−j sin ξ sin φ

− cos ξ

c−1 cos ξ sin φ

−c−1 cos ξ cos φ

0


(23)

Here, j denotes the imaginary unit, indicating that the two horizontal translational components are
phase-shifted by π/2 with respect to the other components. Note that the amplitude and frequency of the
wave only affect the magnitude of this vector quantity, yet the direction of the vector is independent of
amplitude and frequency and can be fully described by the propagation azimuth φ, the ellipticity angle
ξ, and the phase velocity c of the Rayleigh wave. Therefore, it should be possible to extract these wave
parameters by simply analyzing the relative amplitudes of a wave recorded on a single 6DOF station.
Sollberger et al. [25] refer to the direction of the vector v as the six-component polarization direction
of a Rayleigh wave. The aim is now to try and parameterize this model such that it optimally fits the
polarization direction present in the actual, recorded data. In the following, this process is referred to as
6DOF polarization analysis.
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Let us now return to the 6DOF data recorded after the gulf of Alaska earthquake (Figure 2). We could
try to simply fit the direction of the polarization vector in Equation (23) to the direction described by the
six samples at each sampling location of the time series in order to estimate Rayleigh wave parameters.
Clearly, this would not lead to any stable results, mainly for two reasons.

Firstly, the recorded time series is highly oscillatory and includes many zero-crossings where the
amplitudes of the recorded wave drop below the noise level, resulting in very poor estimates of the
wave parameters.

Secondly, the polarization direction model described by Equation (23) is only valid for a single
Rayleigh wave. Yet, we know that the recorded data also includes P-, S-, and Love waves that could
potentially interfere in time. The extracted wave parameters would thus only have very limited meaning.

Since we know that seismic waves are transient events of limited duration, it is thus advisable to
perform the analysis in a limited time window within which the signal-to-noise ratio can be improved
and where optimally only a single Rayleigh wave is present. If the time window is chosen appropriately,
and only a single Rayleigh wave is present in the analysis window, the complete 6DOF ground-motion
in the window will be along a single direction which can be described by the polarization vector in
Equation (23). However, it turns out that performing the analysis in a time window is often still not
enough to achieve a stable result. The reason is that the direction of the polarization vector in Equation (23)
is only seemingly independent of frequency. It is well-known that the phase velocity c of Rayleigh waves is
strongly frequency-dependent itself due to the layering in the Earth’s crust so that c = c(ω). Better results
can thus be achieved by performing the analysis on a time-frequency decomposed representation of the
time-series [68]. Another benefit of performing a time-frequency decomposition is that an additional
separation of differrent wave modes can be achieved, making the data better suited for fitting a model of
just a single wave type.

Figure 4a shows the North component (which is roughly in the radial direction) seismogram of
translational motion of the Alaska earthquake. A time-frequency decomposed representation of the same
seismogram obtained by computing the S-transform [69] is shown in Figure 4b. The early arriving phases in
the frequency band above 0.05 Hz correspond to body waves (P- and S-phases). The later-arriving surface
waves (on the North component mainly Rayleigh waves) generally show a lower frequency content.

Now, we try to fit our wave model to the recorded data in order to find the best-fitting wave
parameters, which are, for a Rayleigh wave: the phase velocity, the azimuth and the ellipticity. There are
multiple ways to achieve this, among the methods that have been proposed are the maximum likelihood
estimator [42], orthogonal distance regression [36], and the MUSIC algorithm [25]. It was shown
that, due to the extension of the data dimensionality introduced by the additional rotational data,
parameters of two interfering arrivals can be simultaneously estimated [25], which is not possible with
conventional three-component polarization analysis. Here, we choose a simple approach of estimating
the wave parameters: We try to minimize the angle between the vector describing our theoretical model
(Equation (23)) and the vector describing the dominant polarization direction in the data. The best-fitting
wave parameters are found, when the two vectors are parallel, which means that the angle between the
two is zero.
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Figure 4. Single-station wave parameter estimation using 6DOF polarization analysis on the example of
the 2018 gulf of alaska earthquake. The North component of translational motions is displayed in (a) with
the corresponding S-transform in (b). Shown below is the estimation of frequency- and time-dependent
Rayleigh wave parameters: phase velocity (c), back azimuth (d), and ellipticity angle (e). The results are
only displayed at time-frequency pairs where the automatic detection routine identified a Rayleigh wave
(Figure 5). See text for details.

A common way to extract the polarization direction from multicomponent data at each time-frequency
pair (ω, t), is to perform an eigenanalysis of the so-called spectral matrix S(ω, t) [70]. The 6 × 6 spectral
matrix is formed within a time-frequency window by averaging the outer product of the data vector
with itself:

S(ω, t) = g(∆ω, ∆t) ∗ u(ω, t)uH(ω, t). (24)

Here, u(ω, t) = (ün, üe, üz, ω̇n, ω̇e, ω̇z)T(ω, t) is a vector composed of the time-frequency decomposed
6DOF data, ∗ denotes convolution, and (.)H is the Hermitian conjugate transpose. The function g(∆ω, ∆t)
is a windowing function of spectral width ∆ω and temporal width ∆t, for example, a Gaussian window.

An eigendecomposition of the spectral matrix will then reveal the dominant polarization direction of
the data as the eigenvector e1 associated with the largest eigenvalue.

At each time-frequency pair, we now try to find the parameter vector m(ω, t) = (φ, ξ, c)(ω, t) that
minimizes the angle ϕ(m) between the modeled polarization vector v(m, ω, t) in Equation (23) and the
dominant polarization vector in the data e1(ω, t), where the angle is given by the dot product:
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cos ϕ =
v(m, ω, t) · e1(ω, t)
|v(m, ω, t)| |e1(ω, t)| . (25)

The set of best-fitting wave parameters m̂(ω, t) can now be found by numerically maximimizing the
following likelihood function by a grid search:

m̂(ω, t) = arg max
m(ω,t)

(e−ϕ2(m)). (26)

The exponential in Equation (26) will take on a maximum value of 1 when the modeled polarization
vector is parallel to the data polarization vector (i.e., when ϕ(m) = 0, and a perfect data fit is found) and
will decay exponentially away from the maximum.

The results of applying this wave parameter estimation scheme to the 6DOF signal recorded after
the gulf of Alaska earthquake are given in Figure 4c–e. Shown are the color-coded, estimated Rayleigh
wave parameters m̂(ω, t) that best fit the observed data. Values are only displayed for time-frequency
pairs where the maximum of the likelihood function (exponential in Equation (26)) reached values larger
than 0.7. For the computation of the spectral matrix, we used a Gaussian time window that extends over
two dominant periods in time (frequency-dependent) and over 0.01 Hz in frequency.

Several interesting observations can be made when analyzing this result. The estimated phase
velocities show the typical dispersion characteristic that is expected for surface wave arrivals. Events with
high phase velocity arrive first at lower frequencies (sensing deeper parts of the Earth). At later times,
the phase velocity then seems to decrease with a trend towards higher frequencies. This highlights the
potential of single-station 6DOF measurements to extract dispersion curves. Stable results seem to be
obtained for both the back-azimuth and the ellipticity angle. Note that the back-azimuth can be resolved on
the full 360 degrees interval and does not show the typical 180 degree ambiguity inherent in conventional
three-component polarization analysis. The extracted back-azimuth at low frequencies shows an average
value of −15 degrees, which nicely corresponds to the theoretical back azimuth for the gulf of Alaska
earthquake (theoretical azimuth: −11 degrees). At higher frequencies the back-azimuth seems to slightly
deviate from the theoretical back azimuth and reaches values between−30 and +20 degrees. This deviation
could potentially be caused by 3D structure in the Earth’s crust. The estimated ellipticy angles show
constant values close to −0.25π, indicating the typical retrograde elliptical motion associated with the
arrival of a Rayleigh wave.

Additionally, the wave-mode filtering capabilities of 6DOF measurements also become apparent
when looking at the results in Figure 4. As mentioned above, wave parameters are only plotted where the
best-fitting wave parameter model resulted in a likelihood value larger than 0.7 in the estimator described
in Equation (26). The large blank areas in Figure 4c–e indicate that for the early body-phase arrivals,
the Rayleigh wave model only poorly fits the data. The reason for this is that the 6DOF ground-motion
pattern is unique for each wave type [25], meaning that, if another wave type is dominant in the analysis
time-frequency window, no parametrization of the Rayleigh wave 6DOF polarization vector v exists that
causes it to lie parallel to the dominant polarization direction in the data e1.

Sollberger et al. [25] provide 6DOF polarization vectors for all wave types that can be fitted to match
the direction of e1 using the same estimation scheme that is described above. The results of performing
such an analysis are shown in Figure 5. The first two panels show the vertical component seismogram
of translational motions of the gulf of Alaska earthquake (Figure 5a) and its S-transform (Figure 5b) up
to frequencies of 0.5 Hz. The following panels show the color-coded likelihood values (value of the
exponential in the estimator described in Equation (26)) for the best-fitting polarization models of the
four wave types P, SV, SH/Love, and Rayleigh. High values indicate that the polarization model fits
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the data at a specific time-frequency pair. Since the 6DOF polarization models are unique for each wave
type, the results can be used to automatically classify the different arrivals in terms of their wave type.
Several arrivals seem to be classified correctly by the algorithm, such as the direct P wave (marked in
red in Figure 5c), the direct S-wave (marked in blue in Figure 5d, and the Rayleigh waves (Figure 5f, as
already discussed above). Note that a significant amount of S-wave energy seems to be detected by the
algorithm in between the direct P- and the direct S-phase. This could be explained by P-to-S-scattering in
the Earth’s crust.

Figure 5. Automated wave type classification using 6DOF polarization analysis. High likelihood values
indicate where the 6DOF polarization template for a specific wave type matches the polarization present in
the data. Since the 6DOF polarization templates are unique for each wave type, this enables the automatic
classification of different phases using just a single 6DOF recording. The vertical component translational
seismogram and its S-transform are shown in (a,b). Likelihood values obtained from 6DOF analysis are
shown in (c) for P-waves, (d) for SV-waves, (e) for SH/Love-waves, and (f) for Rayleigh waves.

The likelihood values displayed in Figure 5 can also be used to filter data by simply multiplying
them with the S-transformed data. Bringing this filtered data back to the time domain using an inverse
S-transform then yields wave-type specific seismograms for all six components (translation and rotation),
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as shown in Figure 6 for the vertical translational component (where not stated otherwise). The East
component of translational motion is displayed for the separated SH-/Love wave data, since SH-/Love
energy should not be present on the vertical translation component. Colored lines indicate the onset times
of different key phases as obtained from ray tracing in the reference PREM model. Note that several
key phases appear to exclusively show up in the expected separated components. Such decomposed
seismograms can significantly facilitate the interpretation of single-station seismic recordings and enable
the application of wave-type specific imaging schemes. In the future, such wave-type classification and
separation schemes could be used to extract certain waves from ambient noise recordings, given that a
sufficiently sensitive rotational sensor exists.

Figure 6. Single-station 6DOF wave-mode filtering applied to the gulf of Alaska earthquake. The automatic
wave-mode classification of different arrivals shown in Figure 5 can be used to filter the data to yield
wave-type specific seismograms. The original vertical component of translational motion is displayed in (a).
The panels (b–e) show the output of the proposed wave-mode separation filters for P-waves (b), SV-waves
(c), SH-/Love waves (d), and Rayleigh waves (e). Colored lines mark arrival times of some key phases
obtained from ray tracing.

3.2. Sparse Wavefield Sampling

“I do not see that land equipment and exploration can expect a bright future if oil continues to hover
around its current price. However, this is only if land seismic carries on in the way it has been doing.



Sensors 2020, 20, 6904 18 of 32

If we make some overdue technological changes and adhere better to the science, the future is bright and
potentially very profitable.” Bob Heath (2018) [71].

In a recent commentary, Bob Heath paints a grim picture for the future of the land seismic exploration
industry [71]. He argues that over the last years, manufacturers and contractors in the industry adhered
to a ‘brute-force’ mentality and, instead of listening to science and innovation, simply tried to overcome
acquisition challenges by increasing the seismic channel counts. And indeed, the number of recording
channels used in the land seismic exploration industry has been steadily increasing over the last
decades, as shown in Figure 7 [72]. Land exploration activities are thus extremely costly operations
involving vast amounts of equipment and personnel. In times of low oil prices, these operations are not
profitable anymore. The main benefit of 6DOF measurements for land seismic exploration can thus be
identified in that they allow for sparser acquisition compared to conventional acquisition with geophones,
thus potentially reducing the costs of land seismic operations. In this section, we will discuss how rotational
data can be used to relax spatial sampling requirements, thus leading to a reduction of the number of
stations required.

The rules dictating the spatial sampling of a seismic wavefield are governed by the Nyquist–Shannon
sampling theorem [73], stating that, in order to reconstruct a wavefield from a set of discrete, regular
spatial measurements at spacing ∆x, the wavefield must contain no information at and above the Nyquist
wavenumber kny = 1/(2∆x). Low-velocity surface waves are characterized by high wavenumbers
and thus often require the spatial sampling interval ∆x to be small. However, the Nyquist–Shannon
sampling theorem assumes sampling of a single quantity of the wavefield. If multiple data types,
corresponding to data filtered before sampling with linearly independent filters in the domain of sampling
are available, then the Nyquist–Shannon sampling criterion is relaxed proportionally to the new degrees
of freedom added to solve the problem. This so-called generalized sampling theorem formulated by
Papoulis [74] provides the mathematical framework to describe the power of rotational measurements for
wavefield reconstruction.
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Figure 7. History of land seismic recording system channel count versus calendar year modified after
Reference [72].
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Let us consider a simple seismic survey, such as the one depicted in the example in Figure 8.
The vertical-component seismic wavefield u̇z(x, t) is recorded with a linear array of vertical-component
geophones spaced at an interval of ∆x (Figure 8a). In our example, the wavefield contains three distinct
events: event 1 showing a linear moveout as it would be observed for a surface wave, event 2 showing a
hyperbolic moveout as it would be expected for a reflected body wave, and event 3 showing the same
linear moveout velocity as event 1, but propagating in the opposite direction (e.g., as expected for a
back-scattered surface wave). Applying a two-dimensional Fourier transform to the data will yield the
recorded wavefield ûz(ω, kx) in the frequency-wavenumber- (ω, kx-) domain (Figure 8b).

If the geophone spacing ∆x is small enough (top two panels in Figure 8), all signal in the ω–kx-domain
will sit within a cone-shaped region in between the positive and negative Nyquist-wavenumber, where
the width of the cone is determined by the events with the lowest moveout velocity in the recorded
data (events 1 and 3 in the given example). In this case, no information is contained at or above the
Nyquist-wavenumber kNy, and the wavefield in the space-time domain u̇(x, t) can be reconstructed at an
arbitrary small spacing using the Shannon-Nyquist sampling theorem. Due to discrete sampling, the signal
cone is periodically repeated infinitely many times along the kx axis at a spacing of 2kNy. These so-called
aliases are hinted at in the faded part of the top right panel of Figure 8. The reconstruction is now achieved,
by multiplying the data in the ω–kx-domain with the following box function:

Π(ω, kx) =


0, if |kx| > kNy
1
2 , if |kx| = kNy
1, if |kx| < kNy

, (27)

thereby suppressing the aliases. This filtering process corresponds to a spatial convolution with a sinc
function in the x-t-domain [73] resulting in a perfect reconstruction of the wavefield at an arbitrary small
sampling interval.

In the bottom two panels (Figure 8c,d), the geophone spacing is now increased by a factor of 2 with
respect to the example in the top two panels (Figure 8a,b), leading to a Nyquist wavenumber k′Ny that is only
half as big. The recorded data is now spatially aliased, meaning that the periodically repeated signal cones
along the wavenumber axis overlap for the low velocity events (events 1 and 3) as depicted in Figure 8d.
As a result, aliased and unaliased data are super-imposed in the frequency-wavenumber-domain (e.g.,
in the area marked with a red circle) and no reconstruction on a finer sampling interval can be achieved
using the sinc filter described above.

Now, assume that at each position where we have a vertical component geophone, we additionally
record the wavefield with a rotational sensor, measuring the rotational motions ω̇y around the crossline (y-)
axis (horizontal axis orthogonal to the x-axis). Due to the free-surface boundary condition, the rotational
sensor will directly measure the inline horizontal derivative of the vertical translational wavefield
component: ω̇y = −∂xu̇z (Equation (19)). The rotational sensor thus allows us to directly measure the
wavefield gradient. Such a gradient measurement is a spatially filtered version of the vertical component
data that can be used to apply the generalized sampling theorem after Papoulis [74] in order to reconstruct
the vertical component wavefield. In the frequency-wavenumber domain, this spatial derivative filter is
simply described by a multiplication with the factor −jkx, with j being the imaginary unit:

∂xu̇z(x, t)←→ −jkxûz(ω, kx). (28)

In the aliased regions of the ω-kx-spectrum, the data will be the sum of the unaliased part ûz(ω, kx)

and aliased part û′z(ω, kx) (see the red circle in Figure 8). For the two-component data recorded by the
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vertical component geophone u̇Z and the crossline rotational sensor ω̇y, we can thus set up the following
set of linear equations [75]:(

u̇z(ω, kx)

ω̇y(ω, kx)

)
=

(
1 1
−jkx −j(kx − 2k′Ny)

)(
ûz(ω, kx)

û′z(ω, kx)

)
, (29)

where k′Ny corresponds to the Nyquist wavenumber of the aliased survey shown Figure 8c,d. Equation (29)
can now be solved to yield the unaliased and aliased parts ûz(ω, kx) and û′z(ω, kx), respectively.
This effectively enables us to double the Nyquist-wavenumber by simply extending the wavenumber
range with the recovered aliased part at the reduced Nyquist-wavenumber. As a result, we can now fully
reconstruct the wavefield shown in the bottom two panels in Figure 8 using only half as many spatial
sampling positions as conventionally required when only vertical component geophone data is available.
Note that generalized sampling does not result in a reduction of the number of acquisition channels
(the total amount of acquired data remains the same), but rather in a reduction of the number of spatial
sampling points.

Figure 8. Spatial aliasing in the frequency-wavenumber domain (ω-k-domain). The top two panels (a,b)
show a wavefield that is sampled according to the Shannon-Nyquist criterion. The wavefield in the bottom
two panels (c,d) is sampled at half the Nyquist-wavenumber leading to aliasing. The red circle marks a
region where aliased and unaliased data overlap in the ω-k-domain.
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If both the rotational sensor and the geophone are installed within the same sensor housing,
the number of sensors required to properly sample the wavefield can thus effectively be halved. This is of
particular importance for 3D seismic exploration campaigns, where the wavefield is additionally sampled
in the crossline direction, leading to installations involving vast amounts of receivers. Since the deployment
of sensors in the field (cost of installation) is one of the major factors driving the costs and length of a
seismic exploration campaign, rotational sensors can help to significantly reduce the required efforts.
Similar techniques are already successfully applied in marine seismic streamer acquisition incorporating
combined recordings of the pressure and particle velocity (which is proportional to the spatial gradient of
the pressure data) in all three spatial directions [76,77].

In order to illustrate the power of having access to gradient information when solving reconstruction
problems, we apply the reconstruction scheme described above to an image of the main building of
ETH Zürich. The results are shown in Figure 9. The original image (sampled at the Nyquist rate)
and its gradient (derivatives in x- and y-directions) are shown in the leftmost panels. Now, assume
that we only have access to every second pixel of both the image and its gradient (middle panels).
If we try to interpolate the image back to its original resolution without using the gradient data,
we only obtain a blurred reconstruction showing aliasing (top two panels on the right). If we now
incorporate the gradient information and reconstruct the image using Equation (29) (assuming the image
pixels are our vertical-component geophone data and the pixels of the two gradients of the image our
horizontal rotational data), we obtain the image in its original resolution (bottom two panels on the right).
Naturally, the differences are most noticeable in areas where the picture shows strong spatial variations
(i.e., its gradient is different from zero). This is most pronounced in the windows and pillars of the building
and at edges.

As discussed in Section 3.1.2, the dominating feature in land seismic data dictating the spatial sampling
is coherent surface wave noise, which exhibits the shortest wavelengths of all typically recorded wave
types. If single-station methods, such as the wave mode filtering algorithm described in this paper, can be
applied to suppress this noise, the spatial sampling can potentially be significantly relaxed. Currently, such
algorithms are computationally demanding and can therefore not be applied to large data volumes, such
as typically encountered in seismic exploration. Thus, there is a need for the development of efficient
algorithms that enable 6DOF wave mode filtering for large datasets. We foresee that the recent, rapid
emergence of machine learning methods will play an important role in enabling such algorithms. Even if
such algorithms can be realized, conventional array processing methods will likely have the advantage of
providing a better signal-to-noise ratio when compared to single-station approaches due to the possibility
to stack signals from individual array elements. We, therefore, expect that an optimal filtering approach
will consider a combination of single-station and array processing methods for wave mode filtering.

At present, there are some economical and logistical limitations that exacerbate the use of rotational
sensors in seismic exploration. Most of the sensors that are available to date are specifically designed
for the needs in global seismology (see Section 4). The high demands on sensitivity dictated by global
seismology led to devices that are bulky and heavy (for example, due to the need for very long fibre loops
to reach the required sensitivity for fibre-optic gyroscopes). Additionally, most of the available systems
include analog-to-digital converters and electronics for remote single-station deployment, leading to a high
power consumption and high costs per unit. This renders most of the devices unsuitable for application in
land seismic exploration. For wide-spread applications of rotational motion sensors in seismic exploration,
it is therefore crucial to bring down the costs per unit. Since signal levels are expected to be much higher
in seismic exploration than in global seismology, due to the proximity to the source [21], smaller and less
sensitive devices with an analog output should be envisaged. Innovative rotation sensors based on the
principles of conventional geophones, such as described by Muyzert et al. [78], could prove a valuable
alternative to expensive fibre-optic gyroscope for wide-spread use in land-seismic exploration.
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Figure 9. Image reconstruction of a picture of the ETH main building illustrating the power of using
gradient information in reconstruction problems. The same idea can be applied to reconstruct seismic
wavefields, if measurements of the wavefield’s gradients (e.g., due to a rotational sensor at the Earth’s
surface) are available.

3.3. Rotational Data as a New Observable to Constrain Inverse Problems

Geophysicists are often faced with optimization problems that are severely under-determined,
meaning that the number of data points that are available is much smaller than the number of parameters
that need to be estimated. An example is the seismic tomography problem, which can often only be solved
by enforcing strong regularization (i.e., a priori knowledge). Any additional data that can be obtained,
such as rotational data, should thus help to better constrain the problem. Indeed, it was shown that the
additional data obtained by rotational motion measurements can help to reduce some of the ambiguity
of seismic inverse problems. In this section, we review recent progress in the use of rotational data to
constrain seismic inverse problems.

Since rotational data are gradient measurements, they are mainly sensitive to small-scale heterogeneity
(i.e., large values are measured where the wavefield changes rapidly in space) [79]. This local sensitivity can
help to better constrain the near-receiver structure. Fichtner and Igel [80] derived sensitivity densities for
combined measurements of translational and rotational ground-motion and demonstrated that such
kernels only attain large absolute values in the vicinity of the receiver, independent of the source
position, magnitude and timing. Based on this work, Bernauer et al. [81] and Bernauer et al. [82]
proposed to incorporate rotational motion recordings into seismic tomography to yield better resolved
and more realistic tomographic images of the near-receiver structure without the requirement to know the
deeper structure.

The use of rotational motion measurements was also demonstrated to reduce the non-uniqueness
in finite source inverse problems [83,84] and to improve the characterization of the seismic moment
tensor [85]. The incorporation of rotational motions into the source inversion schemes could stabilize
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results with only half the amount of stations required to achieve comparable results using conventional
pure translational data.

Rotational motions are also considered in long-period seismology. Igel et al. [86] reported on the first
direct observations of the toroidal eigen-modes of the Earth using the Wettzell ring laser. Further analysis
of these ring laser observations of the Earth’s free oscillations also enabled the detection of energy from
spheroidal oscillations that could potentially help to better constrain the deep interior properties of the
Earth [87,88].

Limited studies exist on the potential of using rotational data for imaging.
Li and van der Baan [89] demonstrated that the incorporation of rotational motion helps to enhance
imaging of microseismic source locations.

Even though rotational motion seismology is still in its infancy, all of the studies above indicate that
a significant information gain can be achieved when incorporating rotational motions into geophysical
inverse problems. Most of the studies listed above are purely theoretical and a demonstration of the
benefits of rotational motion measurements with field data are missing. Given that rotational sensors
are now becoming more wide-spread, we expect that this gap will be closed in the near-future and new
schemes will be developed that will incorporate rotational motions into, for example, full waveform
inversion or seismic interferometry (see theoretical foundations in [90]).

3.4. Tilt Corrections of Translational Data

Conventional inertial seismometers are subject to rotational motions induced by the passing of
seismic waves. This leads to changes in the projection of gravity onto the three inertial components.
Direct measurements of the effective rotation permit correcting the recorded seismograms for these
effects. Tilt effects are especially significant for long period signals. Various authors discuss the
deteriorating effects that rotations (particularly tilt) can have on the recordings of conventional inertial
seismometers [91–94] and suggest potential correction schemes [9,93,95–97]. Tilt contamination of inertial
seismometer recordings has been shown to be significant, for example, in the near field of active
volcanoes [98] and on the ocean bottom [28] and was demonstrated to have an adverse effect on moment
tensor inversions [98].

3.5. Earthquake Engineering

For centuries, earthquake seismologists have been arguing about the importance of rotational effects
associated with earthquakes. As summarized by Ferrari [99], there are various reports on the observations
of twisting of tombstones, statues and monuments after earthquakes, e.g., Reference [100,101]. Even though
most of these effects can be explained to result from pure translational ground-motion and are likely caused
by the asymmetry of the constructions, there are indications that this is not always the case [15,102]. In fact,
the structural response of buildings to rotational motions is widely unknown [103]. Despite indications
that damage caused by rotational motions might be significant [104–110], earthquake hazard assessment
was until recently almost exclusively based on the analysis of translational motion. Especially in the
near-field of earthquakes, rotational motion amplitudes can be significant, e.g., Reference [5,111,112], with
a large potential for damage. Hence, there is a large interest by the earthquake engineering community to
develop reliable rotational sensors for the evaluation of rotational motions induced in buildings and for
the estimation of infrastructural damage risk caused by rotational ground-motions.

Zembaty et al. [113] showed that rotational motion data enables the estimation of the stiffness of a
material in structural health monitoring.
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4. How to Measure Rotational Motions

Even though the main focus of this paper is the processing of rotational seismic data, in this
section, we will briefly review the concepts of how rotational ground-motion can be measured. This is
mainly to give the interested reader an overview over the technology that is currently available.
Measurements of rotational ground motion can either be obtained from (1) direct observations using a
dedicated rotational sensor or (2) estimated from dense arrays of conventional inertial sensors using a
finite-difference approximation.

4.1. Direct Observations

The development of dedicated rotational sensors for seismological applications is challenging
since specific requirements need to be fulfilled. (1) Rotation sensors require a high sensitivity over a
broad frequency-range, since ground rotation rates are expected to be in the range of 10−14 rad/s to
1 rad/s [10,114]. (2) A rotational seismometer must be insusceptible to linear translational motions.
(3) Self-noise levels need to be temperature-independent. (4) The sensor must be stable against magnetic
field variations. A variety of technical solutions have been proposed, which we will briefly review in
the following.

The most sensitive instruments for ground rotation sensing are large ring laser gyroscopes.
Originally developed to monitor the Earth’s absolute rotation rate, these sensors also provide data
of rotational ground-motions generated by earthquakes and ocean noise, e.g., Reference [9,34]. Ring
lasers are so-called Sagnac interferometers that detect the beat frequency of two counter-propagating
laser beams [9,115,116]. This beat frequency is directly proportional to the rotation rate. Just recently,
in 2017, the first-of-its-kind multicomponent ring laser gyroscope ROMY started delivering first
observations of rotational ground-motions [66].

While ring lasers provide highly accurate measurements of ground rotational motion, the sheer size
and cost of such devices excludes them from widespread use in seismology and seismic exploration.
Thus, there is a need for portable instruments. The most common technologies for portable rotation
sensors are liquid-based systems, magneto-hydrodynamic sensors, and fibre-optic gyroscopes.

Liquid-based rotational motion sensors sense the differential movement in a liquid-filled torus by
means of molecular electronic transducers (MET) [117,118]. Such sensors were successfully employed
to record rotational ground-motions generated by nearby artificial sources [16,119,120] but show high
sensitivity to changes in ambient temperature [121].

Magneto-hydrodynamic sensors make use of the inertia of a conductive fluid in a stable external
magnetic field to measure angular motions, e.g., Reference [122]. The relative motion between the fluid and
the magnetic field in case of externally applied rotation generates a radial current that can be measured.

Fibre-optic gyroscopes are based on the same principle as large ring lasers. The Sagnac effect (beat
frequency of two propagating laser beams) is evaluated inside a fibre-optical loop [116]. A major advantage
of fibre-optical sensors is that they are inherently insensitive to translational motion. Fibre-optic gyroscopes
were already successfully employed for seismological applications [28,123–127]. Recently, the first
commercial fiber optic gyroscope designed specifically for the needs of seismology has become available
blueSeis—3A by iXBlue, France [12].

D’Alessandro and D’Anna [128] and Liu and Pike [129] propose rotational sensors based on
micro electromechanical system (MEMS) technology. Brokešová and Málek [13] mounted conventional
geophones on a fixed frame and used a finite-difference approximation to estimate spatial derivatives
of the particle velocity field that can be used to compute rotation rates around all three coordinate axes.
Their sensor, called rotaphone, has since successfully recorded rotational ground-motions in tectonically
active regions around the globe [130]. Muyzert et al. [78] proposed a rotational sensor consisting of a pair
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of 3C microelectromechanical accelerometers that are vertically placed a few centimeters apart within a
cylindrical housing. If this sensor is planted vertically just below the Earth’s surface, the vertical gradient
between the two sensors is enough to measure the two horizontal components of rotational motions due
to the free surface boundary condition (Equation (19)). This relatively cheap implementation makes the
sensor suitable for mass production and use in seismic exploration.

Barak et al. [131] recognized that conventional induction-coil magnetometers can potentially be used
to measure ground rotational motions since a rotation of the sensor results in a change in the projection of
the Earth’s magnetic field on the three orthogonal magnetometer components.

Under certain assumptions, rotational motions can also be estimated from a single recording of
translational motion by decomposing the three-component seismograms into body waves [132].

4.2. Array-Derived Rotational Motions

Since reliable rotational instruments have not been available until recently, arrays of conventional
three-component inertial sensors have been widely used to estimate rotational motion by computing
the horizontal spatial gradients of the recorded seismic wavefield measured at the Earth’s surface,
e.g., Reference [29,43–45,133–136]. Techniques to estimate spatial wavefield gradients from arrays of
3C stations are generally based on the expansion of the wavefield about a central (master) station using a
Taylor series. This allows one to estimate the complete displacement gradient tensor (Equation (2)) and
thus also permits the estimation of ground strains. Suryanto et al. [136] compared array-derived rotational
motions with direct ring-laser observations and found a surprisingly good fit (correlation coefficient
of 0.94). However, the Taylor series approximation is only reasonable under the assumption that the
subsurface is homogeneous and deformation varies linearly over the array area. In addition, array-based
spatial wavefield gradient data is prone to noise caused by measurement uncertainties, such as varying
receiver-to-ground coupling, differences in the instrument response, or sensor orientation [137–141].
Further issues with array-derived rotation estimates can be caused by strain-rotation coupling, a site-effect
describing the conversion of strains on a large scale (seismic wavelength) to rotations on a local scale due
to near-receiver heterogeneity [142].

5. Conclusions

We anticipate that dedicated rotational sensors will soon become both more accurate and
more affordable. This could eventually change the standard instrumentation procedures in seismology
from conventional inertial seismometers to full 6DOF setups. In order to help seismologists to embrace
rotational motions as new observables, it is necessary to extensively illustrate the benefits of such
measurements with field data examples. In this paper, we provide the first-ever 6DOF analysis of a
teleseismic earthquake recorded on a multicomponent ring laser, illustrating the rich amount of information
on wave parameters and wave type that can be extracted from only a very limited dataset (a single source
and a single recording station).

We, therefore, expect that 6DOF seismometers will play an important role for seismology in areas
where the employment of large source-receiver configurations is not possible. This is especially true in
extraterrestrial seismology where logistical constraints limit the amount of sensors that can be employed
and seismic events are rare due to the absence of plate tectonics on most planets and moons in our
solar system. Here, 6DOF ground-motion data can help to extract the most information from the
limited amount of available data and ultimately lead to a better understanding on the interior structure
and formation of extraterrestrial objects. The development of 6DOF ground-motion sensors for space
exploration is currently underway [143].
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In land seismic exploration, rotational data allow one to relax the spatial sampling requirements
inherent to conventional seismic acquisition, allowing for sparser receiver layouts and resulting in a
significant reduction of the number of receivers needed in land seismic operations.
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